Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots

نویسندگان

  • Claudia M. C. S. Listopad
  • Jason B. Drake
  • Ron. E. Masters
  • John F. Weishampel
چکیده

This study used an affordable ground-based portable LiDAR system to provide an understanding of the structural differences between old-growth and secondary-growth Southeastern pine. It provided insight into the strengths and weaknesses in the structural determination of portable systems in contrast to airborne LiDAR systems. Portable LiDAR height profiles and derived metrics and indices (e.g., canopy cover, canopy height) were compared among plots with different fire frequency and fire season treatments within secondary forest and old growth plots. The treatments consisted of transitional season fire with four different return intervals: 1-yr, 2-yr, 3-yr fire return intervals, and fire suppressed plots. The remaining secondary plots were treated using a 2-yr late dormant season fire cycle. The old growth plots were treated using a 2-yr growing season fire cycle. Airborne and portable LiDAR derived canopy cover were consistent throughout the plots, with significantly higher canopy cover values found in 3-yr and fire suppressed plots. Portable LiDAR height profile and metrics presented a higher sensitivity in capturing subcanopy elements than the airborne system, particularly in dense canopy plots. The 3-dimensional structures of the secondary plots with varying fire return intervals were dramatically different to old-growth plots, where a symmetrical distribution with clear recruitment was visible. Portable LiDAR, even though limited to finer spatial scales and specific biases, is a low-cost investment with clear value for the management of forest canopy structure. OPEN ACCESS Remote Sens. 2011, 3 1285

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Canopy Heights over a Large Region Using Heterogeneous Lidar Datasets: Efficacy and Challenges

Generating accurate and unbiased wall-to-wall canopy height maps from airborne lidar data for large regions is useful to forest scientists and natural resource managers. However, mapping large areas often involves using lidar data from different projects, with varying acquisition parameters. In this work, we address the important question of whether one can accurately model canopy heights over ...

متن کامل

Integration of LiDAR and Landsat Data to Estimate Forest Canopy Cover in Coastal British Columbia

Disclaimer: The PDF document is a copy of the final version of this manuscript that was subsequently accepted by the journal for publication. The paper has been through peer review, but it has not been subject to any additional copy-editing or journal specific formatting (so will look different from the final version of record, which may be accessed following the DOI above depending on your acc...

متن کامل

Accuracy of Forest Parameters Derived from Medium Footprint Lidar under Operational Constraints

The objective of this study is to test the feasibility of nation-wide medium footprint airborne laser scanning (ALS) data for derivation of forest parameters. The comparison of canopy closure as one important parameter for many forest functions derived from ALS data and aerial photo interpretation was conducted. The present study was carried out in the framework of the Swiss National Forest Inv...

متن کامل

Extrapolating Forest Canopy Fuel Properties in the California Rim Fire by Combining Airborne LiDAR and Landsat OLI Data

Accurate, spatially explicit information about forest canopy fuel properties is essential for ecosystem management strategies for reducing the severity of forest fires. Airborne LiDAR technology has demonstrated its ability to accurately map canopy fuels. However, its geographical and temporal coverage is limited, thus making it difficult to characterize fuel properties over large regions befor...

متن کامل

Application of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations: Tests on LVIS and GLAS

Forest canopy height is an important biophysical variable for quantifying carbon storage in terrestrial ecosystems. Active light detection and ranging (lidar) sensors with discrete-return or waveform lidar have produced reliable measures of forest canopy height. However, rigorous procedures are required for an accurate estimation, especially when using waveform lidar, since backscattered signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011